Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode.
نویسندگان
چکیده
The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.
منابع مشابه
Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy.
The electrochemical oxidation of formic acid was studied by the tip generation-substrate collection (TG-SC) mode of scanning electrochemical microscopy (SECM), extending the number of applications of SECM in electrocatalysis. Formic acid was generated at a Hg on Au ultramicroelectrode (UME) tip by reduction of CO(2) in a 0.1 M KHCO(3) solution saturated with this gas. The electrocatalytic activ...
متن کاملMethanol Tolerance of Pd–Co Oxygen Reduction Reaction Electrocatalysts Using Scanning Electrochemical Microscopy
Bimetallic Pd–Co and pure Pt electrocatalysts were evaluated for tolerance to methanol in the oxygen reduction reaction ORR in 0.5 M H2SO4 using the tip generation–substrate collection mode of scanning electrochemical microscopy. The Pd–Co electrocatalyst, Pd80Co20 80% Pd, 20% Co , showed the highest ORR activity among the different Pd–Co compositions, both in the absence and presence of MeOH. ...
متن کاملScanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode.
A scanning electrochemical microscopy (SECM) methodology for localized quantitative kinetic studies of electrode reactions based on the tip generation-substrate collection (TG-SC) operation mode is presented. This approach does not use the mediator feedback required in typical kinetic SECM experiments. The reactant is galvanostatically electrogenerated on a tip placed in proximity to the substr...
متن کاملThe study of multireactional electrochemical interfaces via a tip generation/substrate collection mode of scanning electrochemical microscopy: the hydrogen evolution reaction for Mn in acidic solution.
We report a new method of scanning electrochemical microscopy (SECM) that can be used to separate multireactional electrochemical interfaces, i.e., electrodes at which two or more reactions occur (and hence two partial currents flow) at the same time. This was done with a modified tip generation/substrate collection mode where the two reactions occur on the tip electrode, and the substrate elec...
متن کاملDetection of CO2•- in the Electrochemical Reduction of Carbon Dioxide in N,N-Dimethylformamide by Scanning Electrochemical Microscopy.
The electrocatalytic reduction of CO2 has been studied extensively and produces a number of products. The initial reaction in the CO2 reduction is often taken to be the 1e formation of the radical anion, CO2•-. However, the electrochemical detection and characterization of CO2•- is challenging because of the short lifetime of CO2•-, which can dimerize and react with proton donors and even mild ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 75 13 شماره
صفحات -
تاریخ انتشار 2003